Disrupted Topologic Efficiency of White Matter Structural Connectome in Individuals with Subjective Cognitive Decline

Radiology. 2018 Jan;286(1):229-238. doi: 10.1148/radiol.2017162696. Epub 2017 Aug 11.

Abstract

Purpose To determine whether individuals with subjective cognitive decline (SCD), which is defined by memory complaints with normal performance at objective neuropsychologic examinations, exhibit disruptions of white matter (WM) connectivity and topologic alterations of the brain structural connectome. Materials and Methods Diffusion-tensor magnetic resonance imaging and graph theory approaches were used to investigate the topologic organization of the brain structural connectome in 36 participants with SCD (21 women: mean age, 62.0 years ± 8.6 [standard deviation]; age range, 42-76 years; 15 men: mean age, 65.5 years ± 8.9; age range, 51-80 years) and 51 age-, sex-, and years of education-matched healthy control participants (33 women: mean age, 63.7 years ± 8.8; age range, 46-83 years; 18 men: mean age, 59.4 years ± 9.3; age range, 43-75 years). Individual WM networks were constructed for each participant, and the network properties between two groups were compared with a linear regression model. Results Graph theory analyses revealed that the participants with SCD had less global efficiency (P = .001) and local efficiency (P = .008) compared with the healthy control participants. Lower regional efficiency was mainly distributed in the bilateral prefrontal regions and left thalamus (P < .05, corrected). Furthermore, a disrupted subnetwork was observed that consisted of widespread anatomic connections (P < .05, corrected), which has the potential to discriminate individuals with SCD from control participants. Moreover, similar hub distributions and less connection strength between the hub regions (P = .023) were found in SCD. Importantly, diminished strength of the rich-club and local connections was correlated with the impaired memory performance in patients with SCD (rich-club connection: r = 0.43, P = .011; local connection: r = 0.36, P = .037). Conclusion This study demonstrated disrupted topologic efficiency of the brain's structural connectome in participants with SCD and provided potential connectome-based biomarkers for the early detection of cognitive impairment in elderly individuals. © RSNA, 2017 Online supplemental material is available for this article.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Cognitive Dysfunction / diagnostic imaging*
  • Connectome / methods*
  • Diffusion Tensor Imaging / methods
  • Female
  • Humans
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Prospective Studies
  • White Matter / diagnostic imaging*