We used a recently developed strategy to analyze patterns of X-chromosome inactivation in human cell populations in order to study female members of families with X-linked agammaglobulinemia--i.e., to detect the carrier state and to test the hypothesis that the disorder results from a defect intrinsic in the development of B cells. According to this strategy, recombinant-DNA probes simultaneously detect restriction-fragment-length polymorphisms and patterns of methylation of X-chromosome genes. Random X-inactivation patterns were observed in isolated peripheral-blood granulocytes, T lymphocytes, and B lymphocytes of women who were not carriers. In contrast, one of the two X chromosomes was preferentially active in the peripheral B cells, but not the T cells or granulocytes, of three carriers of the disorder. This observation strongly supports the hypothesis that X-linked agammaglobulinemia results from an intrinsic defect in B-cell development. Moreover, the analysis described here can be used for direct identification of carriers in families with this disease.