Heavy metal lead (Pb) and cadmium (Cd) are widespread environmental contaminants and exert detrimental effects on the immune system. We evaluated the association between Pb/Cd exposures and innate immune cells in children from an electronic waste (e-waste) recycling area. A total number of 294 preschool children were recruited, including 153 children from Guiyu (e-waste exposed group), and 141 from Haojiang (reference group). Pb and Cd levels in peripheral blood were measured by graphite furnace atomic absorption spectrophotometer, NK cell percentages were detected by flow cytometer, and other innate immune cells including monocytes, eosinophils, neutrophils and basophils were immediately measured by automated hematology analyzer. Results showed children in Guiyu had significantly higher Pb and Cd levels than in reference group. Absolute counts of monocytes, eosinophils, neutrophils and basophils, as well as percentages of eosinophils and neutrophils were significantly higher in the Guiyu group. In contrast, NK cell percentages were significantly lower in Guiyu group. Pb elicited significant escalation in counts of monocytes, eosinophils and basophils, as well as percentages of monocytes, but decline in percentages of neutrophils in different quintiles with respect to the first quintile of Pb concentrations. Cd induced significant increase in counts and percentages of neutrophils in the highest quintile compared with the first quintile of Cd concentrations. We concluded alteration of the number and percentage of innate immune cells are linked to higher levels of Pb and Cd, which indicates Pb and Cd exposures might affect the innate and adaptive immune response in Guiyu children.
Keywords: Cd; Children; E-waste; Innate immune cell; Pb.
Copyright © 2017 Elsevier Inc. All rights reserved.