Hydroxyurea is the primary pharmacotherapy to prevent complications of sickle cell anemia (SCA). Accumulated clinical experience across multiple age ranges has suggested that the use of an individualized maximum tolerated dose (MTD) will achieve optimal benefit of hydroxyurea treatment. However, the current empirical and trial-and-error approach for dose escalation often results in a lengthy titration process and is not strictly implemented in many clinics. Opportunities exist for pharmacokinetics model-based precision dosing of hydroxyurea to quickly achieve individual MTD. This review intends to introduce the use of a quantitative modeling approach including a Bayesian adaptive control strategy for the precision dosing of hydroxyurea. The rationale and practical considerations for the implementation of this approach are discussed. Future research directions with a focus on integrating specific safety and other clinical outcome endpoints into dose selection decision making are also discussed.
Keywords: Bayesian individualized dosing; D-optimal design; Hydroxyurea (HU); Pharmacometrics; Sickle cell anemia (SCA).
Copyright © 2017 Elsevier Inc. All rights reserved.