Inhibition of microRNA-34a ameliorates murine collagen-induced arthritis

Exp Ther Med. 2017 Aug;14(2):1633-1639. doi: 10.3892/etm.2017.4708. Epub 2017 Jun 28.

Abstract

Rheumatoid arthritis (RA) is one of the most frequently occurring autoimmne diseases, with symptoms including synovium hyperplasia, immune disorder, cartilage damage and bone resorption. It has previously been demonstrated that microRNA-34a (miR-34a) may participate in cell apoptosis, immune activation and bone metabolism, therefore the present study investigated the effects of miR-34a on RA. Collagen-induced arthritic (CIA) mice were employed as a murine model of experimental arthritis, and it was demonstrated that the level of miR-34a in the spleens, lymph nodes and synovium was increased in the CIA mice compared with normal DBA/1j mice. Administration of miR-34a antagomir, the chemically modified inhibitor, ameliorated CIA and delayed the onset of symptoms. Arthritis scores decreased and joint swelling was alleviated with the miR-34a antagomir treatment and the expression of inflammatory cytokines was decreased. miR-34a antagomir delivery significantly decreased the percentage of T cells present including T helper (Th) 1, Th2, Th17 and regulatory T cells. Furthermore miR-34a antagomir-treated CIA mice demonstrated decreased inflammatory-induced bone loss. Overall, it was observed that inhibition of miR-34a ameliorated murine arthritis, downregulated T cell percentage and cytokine expression, and suppressed bone loss. The experimental results suggest that inhibition of miR-34a may offer a novel alternative for the treatment of RA.

Keywords: T lymphocyte; autoimmune diseases; collagen-induced arthritis; helper T cells; microRNA-34a.