MicroRNA molecules (miRNAs) play important roles in regulating cell behavior. The expression of certain miRNAs has been shown to be regulated by the androgen receptor (AR), which seems to have a critical role in the tumorigenic process of breast cancer. The differential expression of 84 miRNAs was first examined in three breast cancer cell lines: the luminal MCF-7 and T47D cells and the molecular apocrine MDA-MB-453 cells. Analysis of basal expression of miRNAs revealed that each cell line had distinct miRNA expression where let-7a and -7b were markers of MDA-MB-453 cells, whereas miR-205 was a marker for the luminal cell lines. Treating the cells with the AR agonist, CI-4AS-1, resulted in unique alterations in the expression of specific miRNA among the three cell lines. Particularly, the expression of miR-100 and miR-125 was reduced in MDA-MB-453 cells by five and three folds, respectively. This effect was simultaneous with AR-induced increase in the expression and extracellular release of metalloprotease-13 (MMP13). Transfection of cells with either miR-100 or miR-125b negated the induction of MMP13 release. Additionally, AR activation induced a morphological alteration of MDA-MB-453 cells, which was blocked by miR-125b only. Collectively, these data indicate that AR may control the biological behavior of breast cancer cells and protein expression via miRNAs.
Keywords: Cl-4AS-1; MDA-MB-453; dihydrotestosterone; metalloprotease 13; microRNA.
© 2017 International Federation for Cell Biology.