An aerosol chemical speciation monitor (ACSM) was deployed to study the primary nonrefractory submicron particulate matter emissions from the burning of commercially available solid fuels (peat, coal, and wood) typically used in European domestic fuel stoves. Organic mass spectra (MS) from burning wood, peat, and coal were characterized and intercompared for factor analysis against ambient data. The reference profiles characterized in this study were used to estimate the contribution of solid fuel sources, along with oil combustion, to ambient pollution in Galway, Ireland using the multilinear engine (ME-2). During periods influenced by marine air masses, local source contribution had dominant impact and nonsea-spray primary organic emissions comprised 88% of total organic aerosol mass, with peat burning found to be the greatest contributor (39%), followed by oil (21%), coal (17%), and wood (11%). In contrast, the resolved oxygenated organic aerosol (OOA) dominated the aerosol composition in continental air masses, with contributions of 50%, compared to 12% in marine air masses. The source apportionment results suggest that the use of domestic solid fuels (peat, wood, and coal) for home heating is the major source of evening and night-time particulate pollution events despite their small use.