Postmitochondrial fractions from marine sponges Geodia cydonium, Tethya aurantium, Verongia aerophoba and Pellina semitubulosa activate precarcinogenic aromatic amine 2-aminoanthracene, but not precarcinogenic polycyclic aromatic hydrocarbon benzo(a)pyrene, to Salmonella typhimurium TA 98 mutagens. All four sponge species lack a benzo(a)pyrene monooxygenase activity, but possesses the enzyme activity whose characteristics (selective activation of aromatic amines, NADPH-dependency, pH optimum at 8.4) are similar to FAD-containing monooxygenase. Tethya postmitochondrial fraction possesses an UDP-glucuronyl transferase activity which catalyzes the conjugation of a considerable part of metabolized 2-acetylamino [9-14C]fluorene to water soluble glucuronides. The possible ecological significance of exuded aromatic amine metabolites as well as the significance of the presence of the selective potential for the activation of aromatic amines to mutagens among sponges for our understanding of the fate and effects of carcinogens in the marine environment are discussed.