The association of lysosomal dysfunction and neurodegeneration has been documented in several neurodegenerative diseases, including Alzheimer's Disease (AD). Herein, we investigate the association of lysosomal enzymes with AD at different stages of progression of the disease (mild and severe) or with mild cognitive impairment (MCI). We conducted a screening of two classes of lysosomal enzymes: glycohydrolases (β-Hexosaminidase, β-Galctosidase, β-Galactosylcerebrosidase, β-Glucuronidase) and proteases (Cathepsins S, D, B, L) in peripheral blood samples (blood plasma and PBMCs) from mild AD, severe AD, MCI and healthy control subjects. We confirmed the lysosomal dysfunction in severe AD patients and added new findings enhancing the association of abnormal levels of specific lysosomal enzymes with the mild AD or severe AD, and highlighting the difference of AD from MCI. Herein, we showed for the first time the specific alteration of β-Galctosidase (Gal), β-Galactosylcerebrosidase (GALC) in MCI patients. It is notable that in above peripheral biological samples the lysosomes are more sensitive to AD cellular metabolic alteration when compared to levels of Aβ-peptide or Tau proteins, similar in both AD groups analyzed. Collectively, our findings support the role of lysosomal enzymes as potential peripheral molecules that vary with the progression of AD, and make them useful for monitoring regenerative medicine approaches for AD.
Keywords: Cathepsin B; Cathepsin D; Cathepsin L; Cathepsin S; aging; dementia; neurodegeneration; β-Galactosidase; β-Galactosylcebrosidase; β-Glucuronidase; β-Hexosaminidase.