Usefulness of Mitral Valve Prosthetic or Bioprosthetic Time Velocity Index Ratio to Detect Prosthetic or Bioprosthetic Mitral Valve Dysfunction

Am J Cardiol. 2017 Oct 15;120(8):1373-1380. doi: 10.1016/j.amjcard.2017.07.026. Epub 2017 Jul 25.

Abstract

This study aimed to investigate the utility of transthoracic echocardiographic (TTE) Doppler-derived parameters in detection of mitral prosthetic dysfunction and to define optimal cut-off values for identification of such dysfunction by valve type. In total, 971 TTE studies (647 mechanical prostheses; 324 bioprostheses) were compared with transesophageal echocardiography for evaluation of mitral prosthesis function. Among all prostheses, mitral valve prosthesis (MVP) ratio (ratio of time velocity integral of MVP to that of left ventricular outflow tract; odds ratio [OR] 10.34, 95% confidence interval [95% CI] 6.43 to 16.61, p<0.001), E velocity (OR 3.23, 95% CI 1.61 to 6.47, p<0.001), and mean gradient (OR 1.13, 95% CI 1.02 to 1.25, p=0.02) provided good discrimination of clinically normal and clinically abnormal prostheses. Optimal cut-off values by receiver operating characteristic analysis for differentiating clinically normal and abnormal prostheses varied by prosthesis type. Combining MVP ratio and E velocity improved specificity (92%) and positive predictive value (65%) compared with either parameter alone, with minimal decline in negative predictive value (92%). Pressure halftime (OR 0.99, 95% CI 0.98 to 1.00, p=0.04) did not differentiate between clinically normal and clinically abnormal prostheses but was useful in discriminating obstructed from normal and regurgitant prostheses. In conclusion, cut-off values for TTE-derived Doppler parameters of MVP function were specific to prosthesis type and carried high sensitivity and specificity for identifying prosthetic valve dysfunction. MVP ratio was the best predictor of prosthetic dysfunction and, combined with E velocity, provided a useful parameter for determining likelihood of dysfunction and need for further assessment.

Publication types

  • Multicenter Study

MeSH terms

  • Bioprosthesis / adverse effects*
  • Blood Flow Velocity / physiology*
  • Echocardiography, Doppler
  • Echocardiography, Transesophageal
  • Female
  • Follow-Up Studies
  • Heart Valve Prosthesis / adverse effects*
  • Humans
  • Male
  • Middle Aged
  • Mitral Valve / diagnostic imaging
  • Mitral Valve / physiopathology*
  • Mitral Valve Insufficiency / diagnosis
  • Mitral Valve Insufficiency / etiology
  • Mitral Valve Insufficiency / physiopathology*
  • Prosthesis Design
  • Prosthesis Failure
  • Retrospective Studies
  • Time Factors
  • Ventricular Function, Left / physiology*