ZIF-8 is an easily synthesized porous material which is widely applied in gas storage/separation, catalysis, and nanoarchitecture fabrication. Thermally induced atomic displacements and the resultant framework deformation/collapse significantly influence the application of ZIF-8, and therefore, in situ temperature dependent FTIR spectroscopy was utilized to study the framework changes during heating in the oxidative environment. The results suggest that ZIF-8 undergoes three transition stages, which are the lattice expansion stage below 200 °C, the "reversible" structural deformation stage from 200 to 350 °C, and the decomposition/collapse stage over 350 °C. Our research indicates that the Zn-N bond breaks at a temperature of 350 °C in the oxidant environment, leading to a drastic deformation of the ZIF-8 structure.