AKT2 suppresses pro-survival autophagy triggered by DNA double-strand breaks in colorectal cancer cells

Cell Death Dis. 2017 Aug 24;8(8):e3019. doi: 10.1038/cddis.2017.418.

Abstract

DNA double-strand breaks (DSBs) are critical DNA lesions, which threaten genome stability and cell survival. DSBs are directly induced by ionizing radiation (IR) and radiomimetic agents, including the cytolethal distending toxin (CDT). This bacterial genotoxin harbors a unique DNase-I-like endonuclease activity. Here we studied the role of DSBs induced by CDT and IR as a trigger of autophagy, which is a cellular degradation process involved in cell homeostasis, genome protection and cancer. The regulatory mechanisms of DSB-induced autophagy were analyzed, focusing on the ATM-p53-mediated DNA damage response and AKT signaling in colorectal cancer cells. We show that treatment of cells with CDT or IR increased the levels of the autophagy marker LC3B-II. Consistently, an enhanced formation of autophagosomes and a decrease of the autophagy substrate p62 were observed. Both CDT and IR concomitantly suppressed mTOR signaling and stimulated the autophagic flux. DSBs were demonstrated as the primary trigger of autophagy using a DNase I-defective CDT mutant, which neither induced DSBs nor autophagy. Genetic abrogation of p53 and inhibition of ATM signaling impaired the autophagic flux as revealed by LC3B-II accumulation and reduced formation of autophagic vesicles. Blocking of DSB-induced apoptotic cell death by the pan-caspase inhibitor Z-VAD stimulated autophagy. In line with this, pharmacological inhibition of autophagy increased cell death, while ATG5 knockdown did not affect cell death after DSB induction. Interestingly, both IR and CDT caused AKT activation, which repressed DSB-triggered autophagy independent of the cellular DNA-PK status. Further knockdown and pharmacological inhibitor experiments provided evidence that the negative autophagy regulation was largely attributable to AKT2. Finally, we show that upregulation of CDT-induced autophagy upon AKT inhibition resulted in lower apoptosis and increased cell viability. Collectively, the findings demonstrate that DSBs trigger pro-survival autophagy in an ATM- and p53-dependent manner, which is curtailed by AKT2 signaling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ataxia Telangiectasia Mutated Proteins / genetics
  • Ataxia Telangiectasia Mutated Proteins / metabolism
  • Autophagy / drug effects
  • Autophagy / genetics
  • Bacterial Toxins / pharmacology
  • Cell Line, Tumor
  • Colorectal Neoplasms / genetics*
  • Colorectal Neoplasms / metabolism
  • Colorectal Neoplasms / pathology
  • DNA Breaks, Double-Stranded*
  • Gene Knockdown Techniques
  • HCT116 Cells
  • Humans
  • Proto-Oncogene Proteins c-akt / genetics*
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction
  • Transfection
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • Bacterial Toxins
  • TP53 protein, human
  • Tumor Suppressor Protein p53
  • cytolethal distending toxin
  • AKT2 protein, human
  • ATM protein, human
  • Ataxia Telangiectasia Mutated Proteins
  • Proto-Oncogene Proteins c-akt