Background and objectives: Opioid use disorder (OUD) is a chronic disorder with relapse based on both desire for reinforcement (craving) and avoidance of withdrawal. The aversive aspect of dependence and relapse has been associated with a small brain structure called the habenula, which expresses large numbers of both opioid and nicotinic receptors. Additionally, opioid withdrawal symptoms can be induced in opioid-treated rodents by blocking not only opioid, but also nicotinic receptors. This receptor co-localization and cross-induction of withdrawal therefore might lead to genetic variation in the nicotinic receptor influencing development of human opioid dependence through its impact on the aversive components of opioid dependence.
Methods: We studied habenular resting state functional connectivity with related brain structures, specifically the striatum. We compared abstinent psychiatric patients who use opioids (N = 51) to psychiatric patients who do not (N = 254) to identify an endophenotype of opioid use that focused on withdrawal avoidance and aversion rather than the more commonly examined craving aspects of relapse.
Results: We found that habenula-striatal connectivity was stronger in opioid-using patients. Increased habenula-striatum connectivity was observed in opioid-using patients with the low risk rs16969968 GG genotype, but not in patients carrying the high risk AG or AA genotypes.
Conclusions: We propose that increased habenula-striatum functional connectivity may be modulated by the nicotinic receptor variant rs16969968 and may lead to increased opioid use.
Scientific significance: Our data uncovered a promising brain target for development of novel anti-addiction therapies and may help the development of personalized therapies against opioid abuse. (Am J Addict 2017;26:751-759).
© 2017 American Academy of Addiction Psychiatry.