Introduction: The aim of the current study was to determine the effect of general anesthesia on neonatal brain activity using amplitude-integrated EEG (aEEG).
Methods: A prospective cohort study of neonates (January 2013-December 2015), who underwent major neonatal surgery for non-cardiac congenital anomalies. Anesthesia was administered at the discretion of the anesthetist. aEEG monitoring was started six hours preoperatively until 24 hours after surgery. Analysis of classes of aEEG background patterns, ranging from continuous normal voltage to flat trace in six classes, and quantitative EEG-measures, using spontaneous activity transients (SATs) and interSATintervals (ISI), was performed.
Results: In total, 111 neonates were included (36 preterm/75 full-term), age at time of surgery was (median (range) 2 (0-32) days. During anesthesia depression of brain activity was seen, with background patterns ranging from flat trace to discontinuous normal voltage. In most patients brain activity was two background pattern classes lower during anesthesia. After cessation of anesthesia, recovery to preoperative brain activity occurred within 24 hours in 86% of the preterm and 96% of the term infants. Gestational age and the dose of sevoflurane were significantly associated with SAT-rate (F(2,68) = 9.288, p < 0.001) and ISI- durations during surgery (F(3,71) = 12.96, p < 0.001). Background pattern and quantitative EEG-values were not associated with brain lesions (χ2(4) = 2.086, ns).
Conclusion: aEEG shows a variable reduction of brain activity in response to anesthesia in neonates with noncardiac congenital anomalies, with fast recovery after cessation of anesthesia. This reduction is related to gestational age and the dose of sevoflurane. The aEEG offers the opportunity to monitor the depth of anesthesia in the neonate.