To reduce the inconvenient and painful of subcutaneous needle injection, the polymer microneedle patches that fabricated from modified alginate and hyaluronate were prepared for transdermal delivery of insulin. The as-prepared microneedles (MNs) exhibited excellent mechanical strength to penetrate the skin and good degradability to release loaded insulin. In vitro skin insertion capability was determined by staining with tissue-marking dye after insertion, and the real-time penetration depth was monitored using optical coherence tomography. Confocal microscopy images revealed that the rhodamine B and fluorescein isothiocyanate-labeled insulin (FITC-insulin) can gradually diffuse from the puncture sites to deeper tissue. In vivo and pharmacodynamic studies were then conducted to estimate the feasibility of the administration of insulin-loaded microneedle patches on diabetic mice for glucose regulation. The relative pharmacologic availability (RPA) and relative bioavailability (RBA) of insulin from microneedle patches were 90.5±6.8% and 92.9±7%, respectively. These results suggests the MNs developed in this study have a promising application in diabetes treatment via transdermal delivery.
Keywords: Diabetes; Insulin; Microneedle; Transdermal delivery.
Copyright © 2017 Elsevier B.V. All rights reserved.