Synergistic therapy has caused increasing interest in recent treatment of cancer owing to its preferable therapeutic efficiency to most single antineoplastic protocol. Herein, we design a co-delivery two drugs nanosystem based on biodegradable liposomes, loading cisplatin, Indocyanine green (ICG), and CJM126 coupled with cholesterol derivative (CJM-Chol) for the purpose of synergistic therapy. The obtained nanoparticles showed a uniform diameter of 103.8nm and a favorable morphology. The investigation on near infrared radiated (NIR) responsive release showed that NIR mediated photothermal conversion induced a controllable drug release from liposomes. Furthermore, the designed liposomes (only 50μg/mL) displayed an inspiring photothermal conversion efficiency and received a high temperature (65.6°C, Tm=42°C) when exposed to an 808nm near infrared laser (1.54W, 5min). Besides, it turned out that the delivery system could be efficiently endocytosed by tumor cells, which attributed to its admirable biocompatibility and the targeting role of folate. The prepared nanoparticles showed significantly excellent inhibitory effect (3.05% cell viability in 24h) on MDA-MB-231 cells when added irradiation as compared with free cisplatin (28.41%) or treatment without NIR (11.24%) in our study. Our research highlights the present nanoparticles provide a promising strategy for targeted delivery and photothermal treatment.
Keywords: CJM126; Cisplatin; Controllable release; Photothermal conversion; Synergistic therapy; Targeted delivery.
Copyright © 2017 Elsevier B.V. All rights reserved.