Nitric oxide (NO) is a signaling molecule with pleiotropic physiological roles in normal cells and pathophysiological roles in cancer. NO synthetase expression and NO synthesis are linked to altered metabolism, neoplasticity, invasiveness, chemoresistance, immune evasion, and ultimately to poor prognosis of cancer patients. Exogenous NO in the microenvironment facilitates paracrine signaling, mediates immune responses, and triggers angiogenesis. NO regulates posttranslational protein modifications, S-nitrosation, and genome-wide epigenetic modifications that can have both tumor-promoting and tumor-suppressing effects. We review mechanisms that link NO to cancer hallmarks, with a perspective of co-targeting NO metabolism with first-line therapies for improved outcome. We highlight the need for quantitative flux analysis to study NO in tumors.
Keywords: NO flux analysis; S-nitrosation; cancer metabolism; epigenetics; nitric oxide; tumor microenvironment.
Copyright © 2017 Elsevier Inc. All rights reserved.