Economically competitive microbial production of biorenewable fuels and chemicals is often impeded by toxicity of the product to the microbe. Membrane damage is often identified as a major mechanism of this toxicity. Prior efforts to strengthen the microbial membrane by changing the phospholipid distribution have largely focused on the fatty acid tails. Herein, a novel strategy of phospholipid head engineering is demonstrated in Escherichia coli. Specifically, increasing the expression of phosphatidylserine synthase (+pssA) was found to significantly increase both the tolerance and production of octanoic acid, a representative membrane-damaging solvent. Tolerance of other industrially-relevant inhibitors, such as furfural, acetate, toluene, ethanol and low pH was also increased. In addition to the increase in the relative abundance of the phosphoethanolamine (PE) head group in the +pssA strain, there were also changes in the fatty acid tail composition, resulting in an increase in average length, percent unsaturation and decreased abundance of cyclic rings. This +pssA strain had significant changes in: membrane integrity, surface potential, electrochemical potential and hydrophobicity; sensitivity to intracellular acidification; and distribution of the phospholipid tails, including an increase in average length and percent unsaturation and decreased abundance of cyclic rings. Molecular dynamics simulations demonstrated that the +PE membrane had increased resistance to penetration of ethanol into the hydrophobic core and also the membrane thickness. Further hybrid models in which only the head group distribution or fatty acid tail distribution was altered showed that the increase in PE content is responsible for the increase in bilayer thickness, but the increased hydrophobic core thickness is due to altered distribution of both the head groups and fatty acid tails. This work demonstrates the importance of consideration of the membrane head groups, as well as a modeling approach, in membrane engineering efforts.
Keywords: Hydrophobic core; Octanoic acid; Phosphoethanolamine (PE); Phospholipids.
Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.