Homology Modeling and Protein Interaction Map of CHRNA7 Neurogenesis Protein

Ann Neurosci. 2017 Jul;24(3):173-179. doi: 10.1159/000477155. Epub 2017 Jul 24.

Abstract

CHRNA7 is a neurodevelopmental protein involved in differentiation and neurogenesis, which is also named as nicotinic acetylcholine receptors, cholinergic receptor, nicotinic, alpha 7 (neuronal). The protein encoded by this gene forms a homo-oligomeric channel. It is a major component of brain nicotinic receptors displays that are blocked by and sensitive to alpha-bungarotoxin. Studies reports involvement of CHRNA7 protein in different neurological diseases. Non-availability of 3-dimensional (3D) structure leads the study toward structure 3D prediction along with its interaction analysis. The current paper is focused on the structure prediction through homology modeling of CHRNA7 along with binding site prediction using Schrödinger software suite. In continuation of the study, protein-protein interaction analysis is carried out by using string database. Tertiary structure along with binding sites was obtained, and visualized CHRAN7 protein have interaction with CHRNA protein family along with JAK2, AKT1, PICK1 protein that are involved in neurological disease. Structure formation analysis is an important aspect of proteomics studies. Hence, this predicted structure can be used for further advance studies and drug designing. Protein interaction analysis shows that CHRNA7 protein also interact with AKT1 protein which regulate neuronal differentiation and development, that signifies the role of CHRNA7 protein in neurological diseases.

Keywords: CHRNA7; Homology modeling; Neuronal development disease; Protein interaction; Schrodinger software.