There are two challenges in oligonucleotide detection by liquid chromatography coupled with mass spectrometry (LC-MS), the serious ion suppression effects caused by ion-pair reagents and the low detection sensitivity in positive mode MS. In this study, highly concentrated alcohol vapors were introduced into an enclosed electrospray ionization chamber, and oligonucleotides could be well detected in negative mode MS even with 100 mM triethylammonium acetate (TEAA) as an ion-pair reagent. The MS signal intensity was improved 600-fold (for standard oligonucleotide dT15) by the isopropanol vapor assisted electrospray, and effective ion-pair LC separation was feasibly coupled with high-sensitive MS detection. Then, oligonucleotides were successfully detected in positive mode MS with few adducts by propanoic acid vapor assisted electrospray. The signal intensity was enhanced more than 10-fold on average compared with adding acids into the electrospray solution. Finally, oligonucleotides and peptides or histones were simultaneously detected in MS with little interference with each other. Our strategy provides a useful alternative for investigating the biological functions of oligonucleotides.