Thoracolumbar Cortical Screw Placement with Interbody Fusion: Technique and Considerations

Cureus. 2017 Jul 2;9(7):e1419. doi: 10.7759/cureus.1419.

Abstract

A surge in interest in cortical bone trajectory (CBT), first described by Santoni in 2009, may be a result of its numerous advantages, including reduced surgical incision length and lateral dissection, limited disruption of the facet joints, and decreased blood loss. In addition, CBT offers improved screw pullout strength and the ability to perform hybrid constructs with pedicle screws using minimally invasive approaches. However, one of the main limitations of the technique involves the small screw size, which limits the potential for long-segment constructs. We describe a technique involving a more in-line anatomical trajectory, allowing for larger screw diameters. A feasibility study using a cadaveric model was performed and evaluated. Moreover, a focused review of the literature on the use of CBT was performed. Screw entry points are located along the inferomedial aspect of the facet and angled superolaterally. The use of this technique allows for the placement of larger screws (4.5 to 6.5 mm diameter) without pedicle breaches along with the alignment of screw heads from L1 to S1. In addition, the technique can be performed using stereotactic navigation or fluoroscopy. A direct, more in-line technique allows for larger screws to be placed using CBT. This technique can be combined with minimally invasive approaches. The potential advantages of the CBT technique support its use as a probable alternative to traditional pedicle screw fixation techniques.

Keywords: cortical screws; fusion; spine; thoracolumbar fixation.