Natural products are significant therapeutic agents and valuable drug leads. This is likely owing to their three-dimensional structural complexity, which enables them to form complex interactions with biological targets. Enzymes from natural product biosynthetic pathways show great potential to generate natural product-like compounds and libraries. Many challenges still remain in biosynthesis, such as how to rationally synthesize small molecules with novel structures and how to generate maximum chemical diversity. In this Account, we describe recent advances from our laboratory in the synthesis of natural product-like libraries using natural biosynthetic machinery. Our work has focused on the pat and tru biosynthetic pathways to patellamides, trunkamide, and related compounds from cyanobacterial symbionts in marine tunicates. These belong to the cyanobactin class of natural products, which are part of the larger group of ribosomally synthesized and post-translationally modified peptides (RiPPs). These results have enabled the synthesis of rationally designed small molecules and libraries covering more than 1 million estimated derivatives. Because the RiPPs are translated on the ribosome and then enzymatically modified, they are highly compatible with recombinant technologies. This is important because it means that the resulting natural products, their derivatives, and wholly new compounds can be synthesized using the tools of genetic engineering. The RiPPs also represent possibly the most widespread group of bioactive natural products, although this is in part because of the broad definition of what constitutes a RiPP. In addition, the underlying ideas may form the basis for broad-substrate biosynthetic pathways beyond the RiPPs. For example, some of the ideas about kinetic ordering of broad substrate pathways may apply to polyketide or nonribosomal peptide biosynthesis as well. While making these products, we have sought to understand what makes biosynthetic pathways plastic and whether there are any rules that might generally apply to plastic biosynthetic pathways. We present three principles of diversity-generating biosynthesis: (1) substrate evolution, in which the substrates change while enzymes remain constant; (2) pairing of recognition sequences on substrates with biosynthetic enzymes; (3) an inverse metabolic flux in comparison to canonical pathways. If these principles are general, they may enable the design of unimagined derivatives using biosynthetic engineering. For example, it is possible to discover substrate evolution directly by examining sequencing data. By shuffling appropriate recognition sequences and biosynthetic enzymes, it has already been possible to make new hybrid products of multiple pathways. While cases so far have been limited, if this is more general, designed synthesis will become routine. Finally, biosynthesis of natural products is regulated in elaborate ways that are just beginning to be understood. If the inverse metabolic flux model is widespread, it potentially informs on what the timing and relative production level of each enzyme in a designer pathway should be in order to optimize the synthesis of new compounds in vivo.