Despite the tremendous success of anti-retroviral therapy (ART) no current treatment can eradicate latent HIV reservoirs from HIV-infected individuals or generate, effective HIV-specific immunity. Technological limitations have hampered the identification and characterization of both HIV-infected cells and HIV-specific responses in clinical samples directly ex vivo. RNA-flow cytometric fluorescence in situ hybridisation (RNA Flow-FISH) is a powerful technique, which enables detection of mRNAs in conjunction with proteins at a single-cell level. Here, we describe how we are using this technology to address some of the major questions remaining in the HIV field in the era of ART. We discuss how CD4 T cell responses to HIV antigens, both following vaccination and HIV infection, can be characterized by measurement of cytokine mRNAs. We describe how our development of a dual HIV mRNA/protein assay (HIVRNA/Gag assay) enables high sensitivity detection of very rare HIV-infected cells and aids investigations into the translation-competent latent reservoir in the context of HIV cure.
Keywords: CD4 T cells; Cytokines; Flow cytometry; Fluorescence in situ hybridization (FISH); HIV; Latency; RNA; Reservoirs; Single-cell techniques; Vaccine.