Hepatitis C virus (HCV) infection is a major cause of liver-related morbidity and mortality. In order to develop effective remedies for hepatitis C, it is important to understand the HCV infection profile and host-HCV interaction. HCV-induced innate immune responses play a crucial role in spontaneous HCV clearance; however, HCV-induced innate immune responses have not been fully evaluated in hepatocytes, partly because there are few in vitro models of HCV-induced innate immunity. Recently, human induced pluripotent stem (iPS) cells have received much attention as an in vitro model of infection with various pathogens, including HCV. We previously established highly functional hepatocyte-like cells differentiated from human iPS cells (iPS-HLCs). Here, we examined the potential of iPS-HLCs as an in vitro HCV infection model, especially for evaluation of the relationship between HCV infection levels and HCV-induced innate immunity. Significant expressions of type I and III interferons (IFNs) and IFN-stimulated genes (ISGs) were induced following transfection with HCV genomic replicon RNA in iPS-HLCs. Following inoculation with the HCV JFH-1 strain in iPS-HLCs, peaks of HCV genome replication and HCV protein expression were observed on day 2, and then both the HCV genome and protein levels gradually declined, while the mRNA levels of type III IFNs and ISGs peaked at day 2 following inoculation. These results suggest that the HCV genome efficiently replicates in iPS-HLCs, resulting in HCV genome-induced up-regulation of IFNs and ISGs, and thereafter, HCV genome-induced up-regulation of IFNs and ISGs mediates a reduction in the HCV genome and protein levels in iPS-HLCs.
Keywords: HCV; Human iPS cells; Innate immunity; Interferon; RIG-I.
Copyright © 2017 Elsevier B.V. All rights reserved.