Identification of extant vertebrate Myxine glutinosa VWF: evolutionary conservation of primary hemostasis

Blood. 2017 Dec 7;130(23):2548-2558. doi: 10.1182/blood-2017-02-770792. Epub 2017 Sep 12.

Abstract

Hemostasis in vertebrates involves both a cellular and a protein component. Previous studies in jawless vertebrates (cyclostomes) suggest that the protein response, which involves thrombin-catalyzed conversion of a soluble plasma protein, fibrinogen, into a polymeric fibrin clot, is conserved in all vertebrates. However, similar data are lacking for the cellular response, which in gnathostomes is regulated by von Willebrand factor (VWF), a glycoprotein that mediates the adhesion of platelets to the subendothelial matrix of injured blood vessels. To gain evolutionary insights into the cellular phase of coagulation, we asked whether a functional vwf gene is present in the Atlantic hagfish, Myxine glutinosa We found a single vwf transcript that encodes a simpler protein compared with higher vertebrates, the most striking difference being the absence of an A3 domain, which otherwise binds collagen under high-flow conditions. Immunohistochemical analyses of hagfish tissues and blood revealed Vwf expression in endothelial cells and thrombocytes. Electron microscopic studies of hagfish tissues demonstrated the presence of Weibel-Palade bodies in the endothelium. Hagfish Vwf formed high-molecular-weight multimers in hagfish plasma and in stably transfected CHO cells. In functional assays, botrocetin promoted VWF-dependent thrombocyte aggregation. A search for vwf sequences in the genome of sea squirts, the closest invertebrate relatives of hagfish, failed to reveal evidence of an intact vwf gene. Together, our findings suggest that VWF evolved in the ancestral vertebrate following the divergence of the urochordates some 500 million years ago and that it acquired increasing complexity though sequential insertion of functional modules.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • ADAMTS13 Protein / metabolism
  • Amino Acid Sequence
  • Animals
  • CHO Cells
  • Cloning, Molecular
  • Cricetulus
  • DNA, Complementary
  • Endothelium, Vascular / metabolism
  • Evolution, Molecular
  • Gene Expression
  • Hagfishes*
  • Homeostasis
  • Humans
  • Models, Molecular
  • Platelet Aggregation
  • Protein Conformation
  • Protein Domains
  • Protein Folding
  • Protein Multimerization
  • Protein Processing, Post-Translational
  • Protein Transport
  • Proteolysis
  • Structure-Activity Relationship
  • Vertebrates
  • Weibel-Palade Bodies / metabolism
  • Weibel-Palade Bodies / ultrastructure
  • von Willebrand Factor / chemistry
  • von Willebrand Factor / genetics*
  • von Willebrand Factor / metabolism*

Substances

  • DNA, Complementary
  • von Willebrand Factor
  • ADAMTS13 Protein