Identification of Streptococcus pneumoniae and its more than 90 serotypes is routinely conducted by culture and Quellung reactions. Quantitative polymerase chain reactions (qPCRs) have been developed for molecular detection, including a pan-pneumococcus lytA assay, and assays targeting 79 serotypes. Reactions require genomic DNA from every target to prepare standards, which can be time consuming. In this study, we have developed a synthetic DNA molecule as a surrogate for genomic DNA and present new single-plex qPCR reactions to increase molecular detection to 94 pneumococcal serotypes. Specificity of these new reactions was confirmed with a limit of detection between 2 and 20 genome equivalents/reaction. A synthetic DNA (NUversa, ∼8.2 kb) was then engineered to contain all available qPCR targets for serotyping and lytA. NUversa was cloned into pUC57-Amp-modified to generate pNUversa (∼10.2 kb). Standards prepared from pNUversa and NUversa were compared against standards made out of genomic DNA. Linearity [NUversa (R2 > 0.982); pNUversa (R2 > 0.991)] and efficiency of qPCR reactions were similar to those utilizing chromosomal DNA (R2 > 0.981). Quantification with plasmid pNUversa was affected, however, whereas quantification with synthetic NUversa was comparable to that of genomic DNA. Therefore, NUversa may be utilized as DNA standard in single-plex assays of the currently known 94 pneumococcal serotypes.
Keywords: NUversa; Streptococcus pneumoniae; qPCR; serotype.
© FEMS 2017.