Fish often encounters exposures to acute environmental hypoxia either spatially or temporally. Gill organ plays important roles in response to hypoxic stress in fish. Few studies focus on the molecular regulation mechanisms of gills under hypoxic stress. In this study, we investigated the transcriptomic response to 12-h acute hypoxia in gill of a hypoxia tolerant fish, Nile tilapia Oreochromis niloticus through RNA sequencing (RNA-Seq). We sequenced messenger RNA from three control samples and three hypoxia-treated samples. Bioinformatics analysis identified 239 differentially expressed genes (DEG) and 34 genes (DUES) that had significant differential alternative isoform regulation events in at least one exonic region in gill in response to acute hypoxia. The spatiotemporal expression analysis in five tissues (heart, liver, brain, gill, and spleen) sampled at three time points (6, 12, and 24 h) under hypoxia treatment confirmed the significant association of differential exon usages in two DUES genes (TLDC2 and SSX2IPA) with hypoxia conditions. Further functional analysis suggested several energy and immune response-related pathways, e.g., metabolic pathway and antigen processing and presentation, contained the most abundant DEG genes. We found that some GO biological processes for DEG genes were significantly enriched under hypoxic stress, such as glycolysis, metabolic process, generation of precursor metabolites and energy, and cholesterol metabolic process. Our findings suggest abundant differential gene expression changes and alternative isoform regulation events in genes involved in the hypoxia response in gill. Our results provide a basis for exploring the gene regulation mechanism under hypoxic stress in fish.
Keywords: Alternative isoform regulation; Differentially expressed gene; Gill; Hypoxia; Tilapia.