Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen of public health concern whose sources and transmission routes are difficult to trace. Using a combined source attribution and case-control analysis, we determined the relative contributions of four putative livestock sources (cattle, small ruminants, pigs, poultry) to human STEC infections and their associated dietary, animal contact, temporal and socio-econo-demographic risk factors in the Netherlands in 2010/2011-2014. Dutch source data were supplemented with those from other European countries with similar STEC epidemiology. Human STEC infections were attributed to sources using both the modified Dutch model (mDM) and the modified Hald model (mHM) supplied with the same O-serotyping data. Cattle accounted for 48.6% (mDM) and 53.1% (mHM) of the 1,183 human cases attributed, followed by small ruminants (mDM: 23.5%; mHM: 25.4%), pigs (mDM: 12.5%; mHM: 5.7%) and poultry (mDM: 2.7%; mHM: 3.1%), whereas the sources of the remaining 12.8% of cases could not be attributed. Of the top five O-serotypes infecting humans, O157, O26, O91 and O103 were mainly attributed to cattle (61%-75%) and O146 to small ruminants (71%-77%). Significant risk factors for human STEC infection as a whole were the consumption of beef, raw/undercooked meat or cured meat/cold cuts. For cattle-attributed STEC infections, specific risk factors were consuming raw meat spreads and beef. Consuming raw/undercooked or minced meat were risk factors for STEC infections attributed to small ruminants. For STEC infections attributed to pigs, only consuming raw/undercooked meat was significant. Consuming minced meat, raw/undercooked meat or cured meat/cold cuts were associated with poultry-attributed STEC infections. Consuming raw vegetables was protective for all STEC infections. We concluded that domestic ruminants account for approximately three-quarters of reported human STEC infections, whereas pigs and poultry play a minor role and that risk factors for human STEC infection vary according to the attributed source.
Keywords: E. coli; animal reservoirs; risk factors; shiga toxin-producing Escherichia coli; source attribution; transmission routes.
© 2017 Blackwell Verlag GmbH.