Contrasting effects of an Mdm2 functional polymorphism on tumor phenotypes

Oncogene. 2018 Jan 18;37(3):332-340. doi: 10.1038/onc.2017.344. Epub 2017 Sep 18.

Abstract

MDM2, an E3 ubiquitin ligase, is a potent inhibitor of the p53 tumor suppressor and is elevated in many human cancers that retain wild-type p53. MDM2 SNP309G is a functional polymorphism that results in elevated levels of MDM2 (due to enhanced SP1 binding to the MDM2 promoter) thus decreasing p53 activity. Mdm2SNP309G/G mice are more prone to spontaneous tumor formation than Mdm2SNP309T/T mice, providing direct evidence for the impact of this SNP in tumor development. We asked whether environmental factors impact SNP309G function and show that SNP309G cooperates with ionizing radiation to exacerbate tumor development. Surprisingly, ultraviolet B light or Benzo(a)pyrene exposure of skin shows that SNP309G allele actually protects against squamous cell carcinoma susceptibility. These contrasting differences led us to interrogate the mechanism by which Mdm2 SNP309 regulates tumor susceptibility in a tissue-specific manner. Although basal Mdm2 levels were significantly higher in most tissues in Mdm2SNP309G/G mice compared with Mdm2SNP309T/T mice, they were significantly lower in Mdm2SNP309G/G keratinocytes, the cell-type susceptible to squamous cell carcinoma. The assessment of potential transcriptional regulators in ENCODE ChIP-seq database identified transcriptional repressor E2F6 as a possible negative regulator of MDM2 expression. Our data show that E2F6 suppresses Mdm2 expression in cells harboring the SNP309G allele but not the SNP309T allele. Thus, Mdm2 SNP309G exhibits tissue-specific regulation and differentially impacts cancer risk.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Animals
  • Carcinogens / toxicity
  • Carcinoma, Squamous Cell / etiology
  • Carcinoma, Squamous Cell / genetics*
  • Carcinoma, Squamous Cell / mortality
  • Carcinoma, Squamous Cell / pathology
  • Disease-Free Survival
  • E2F6 Transcription Factor / genetics
  • E2F6 Transcription Factor / metabolism*
  • Female
  • Genetic Predisposition to Disease*
  • Keratinocytes
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Neoplasms, Experimental / etiology
  • Neoplasms, Experimental / genetics
  • Phenotype
  • Polymorphism, Single Nucleotide
  • Primary Cell Culture
  • Proto-Oncogene Proteins c-mdm2 / genetics*
  • Sex Factors
  • Skin / cytology
  • Skin / drug effects
  • Skin / pathology
  • Skin / radiation effects
  • Skin Neoplasms / etiology
  • Skin Neoplasms / genetics*
  • Skin Neoplasms / mortality
  • Skin Neoplasms / pathology
  • Ultraviolet Rays / adverse effects

Substances

  • Carcinogens
  • E2F6 Transcription Factor
  • E2f6 protein, mouse
  • Mdm2 protein, mouse
  • Proto-Oncogene Proteins c-mdm2