1H nuclear magnetic resonance (NMR) spectroscopy-based metabolic phenotyping is now widely used for large-scale epidemiological applications. To minimize signal overlap present in 1D 1H NMR spectra, we have investigated the use of 2D J-resolved (JRES) 1H NMR spectroscopy for large-scale phenotyping studies. In particular, we have evaluated the use of the 1D projections of the 2D JRES spectra (pJRES), which provide single peaks for each of the J-coupled multiplets, using 705 human plasma samples from the FGENTCARD cohort. On the basis of the assessment of several objective analytical criteria (spectral dispersion, attenuation of macromolecular signals, cross-spectral correlation with GC-MS metabolites, analytical reproducibility and biomarker discovery potential), we concluded that the pJRES approach exhibits suitable properties for implementation in large-scale molecular epidemiology workflows.