To assess the hepatic disposition of erlotinib, we performed positron emission tomography (PET) scans with [11 C]erlotinib in healthy volunteers without and with oral pretreatment with a therapeutic erlotinib dose (300 mg). Erlotinib pretreatment significantly decreased the liver exposure to [11 C]erlotinib with a concomitant increase in blood exposure, pointing to the involvement of a carrier-mediated hepatic uptake mechanism. Using cell lines overexpressing human organic anion-transporting polypeptides (OATPs) 1B1, 1B3, or 2B1, we show that [11 C]erlotinib is selectively transported by OATP2B1. Our data suggest that at PET microdoses hepatic uptake of [11 C]erlotinib is mediated by OATP2B1, whereas at therapeutic doses OATP2B1 transport is saturated and hepatic uptake occurs mainly by passive diffusion. We propose that [11 C]erlotinib may be used as a hepatic OATP2B1 probe substrate and erlotinib as an OATP2B1 inhibitor in clinical drug-drug interaction studies, allowing the contribution of OATP2B1 to the hepatic uptake of drugs to be revealed.
© 2017 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.