Inhaled Steroids and Active Smoking Drive Chronic Obstructive Pulmonary Disease Symptoms and Biomarkers to a Greater Degree Than Airflow Limitation

Biomark Insights. 2017 Sep 7:12:1177271917730306. doi: 10.1177/1177271917730306. eCollection 2017.

Abstract

Rationale: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease, and development of novel therapeutics requires an understanding of pathophysiologic phenotypes.

Objectives: The purpose of the Airways Disease Endotyping for Personalized Therapeutics (ADEPT) study was to correlate clinical features and biomarkers with molecular characteristics in a well-profiled COPD cohort.

Methods: A total of 67 COPD subjects (forced expiratory volume in the first second of expiration [FEV1]: 45%-80% predicted) and 63 healthy smoking and nonsmoking controls underwent multiple assessments including patient questionnaires, lung function, and clinical biomarkers including fractional exhaled nitric oxide (FENO), induced sputum, and blood.

Measurements and main results: The impact of inhaled corticosteroids (ICSs), and to a lesser extent current smoking, was more associated with symptom control, exacerbation rates, and clinical biomarkers, than severity by FEV1. The ICS-treated smoking subjects were most symptomatic, with significantly elevated scores on patient-reported outcomes and more annual exacerbations (P < .05). Inhaled corticosteroid users had greater airflow obstruction and air trapping compared with non-ICS users, regardless of smoking status. Smoking, regardless of ICS use, was associated with significantly lower FENO (P < .05). Smoking, in non-ICS users, was associated with an elevated proportion of sputum neutrophils and reduced sputum macrophages. Increased serum C-reactive protein was observed in smokers but not in ICS and nonsmoking ICS users (P < .05). In contrast, only air trapping and neutrophilic inflammation increased with severity, defined by postbronchodilator FEV1.

Conclusions: Compared with COPD severity by FEV1, ICS use and current smoking were better determinants of clinical characteristics and biomarkers. Use of the ADEPT COPD data promises to prove useful in defining biological phenotypes to facilitate personalized therapeutic approaches.

Keywords: COPD; personalized; phenotypes; profiling; severity.