Minimal mechanical load and tissue culture conditions preserve native cell phenotype and morphology in tendon-a novel ex vivo mouse explant model

J Orthop Res. 2018 May;36(5):1383-1390. doi: 10.1002/jor.23769. Epub 2017 Nov 22.

Abstract

Appropriate mechanical load is essential for tendon homeostasis and optimal tissue function. Due to technical challenges in achieving physiological mechanical loads in experimental tendon model systems, the research community still lacks well-characterized models of tissue homeostasis and physiological relevance. Toward this urgent goal, we present and characterize a novel ex vivo murine tail tendon explant model. Mouse tail tendon fascicles were extracted and cultured for 6 days in a load-deprived environment or in a custom-designed bioreactor applying low magnitude mechanical load (intermittent cycles to 1% strain, at 1 Hz) in serum-free tissue culture. Cells remained viable, as did collagen structure and mechanical properties in all tested conditions. Cell morphology in mechanically loaded tendon explants approximated native tendon, whereas load-deprived tendons lost their native cell morphology. These losses were reflected in altered gene expression, with mechanical loading tending to maintain tendon specific and matrix remodeling genes phenotypic of native tissue. We conclude from this study that ex vivo load deprivation of murine tendon in minimal culture medium results in a degenerative-like phenotype. We further conclude that onset of tissue degeneration can be suppressed by low-magnitude mechanical loading. Thus a minimal explant culture model featuring serum-free medium with low mechanical loads seems to provide a useful foundation for further investigations. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1383-1390, 2018.

Keywords: bioreactor; mechanobiology; metabolic homeostasis; mouse; tendon.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / analysis
  • Animals
  • Biomechanical Phenomena
  • Female
  • Homeostasis
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Phenotype
  • Stress, Mechanical
  • Tendons / physiology*
  • Tissue Culture Techniques

Substances

  • Adenosine Triphosphate