Thalidomide Improves Psoriasis-like Lesions and Inhibits Cutaneous VEGF Expression without Alteration of Microvessel Density in Imiquimod- induced Psoriatic Mouse Model

Curr Vasc Pharmacol. 2018;16(5):510-521. doi: 10.2174/1570161115666171004123428.

Abstract

Background: Psoriasis is a chronic inflammatory skin disorder of unknown etiology. Increasing evidence suggests that psoriasis is probably an angiogenesis-dependent disease. Thalidomide has been reported being able to inhibit the effects of fibroblast growth factor 2 and vascular endothelial growth factor (VEGF), and inhibit tumour necrosis factor-alpha synthesis, and suppress tumour necrosis factor-induced nuclear factor-kappa B activation in Jurkat cells, resulting in suppression of proliferation inflammation, angiogenesis, and the immune system, which are related to the pathogenesis of psoriasis.

Objective: Our study evaluated the influence of thalidomide on the lesional alterations, VEGF expressions and angiogenesis in imiquimod-induced mouse model.

Methods: Balb/c female mice (n=48) 8-12 weeks of age were randomly divided into 6 groups including negative control (vaseline cream), positive control (5% imiquimod cream), and experimental groups including low-dose (10 mg/kg.d), moderate-dose (30 mg/kg.d) and high-dose thalidomide (85 mg/kg.d), and acitretin group (6 mg/kg.d). Serum levels of VEGF-A were quantified by enzyme-linked immunosorbent assay. VEGF protein expression was measured by western blotting and the microvessel density by immunohistochemical staining.

Results: The total psoriasis area and severity index scores in the moderate- and high-dose thalidomide and acitretin groups decreased significantly (p<0.001 for each), and so were the total Baker's scores in the high-dose thalidomide (p=0.008) and acitretin groups (p=0.021). The mean thickness of the epidermis in the experimental and acitretin groups decreased significantly, respectively (p<0.001 for all); the acitretin group was the thinnest. The cutaneous VEGF protein levels down-expressed significantly in the moderate- and high-dose thalidomide groups (p<0.05 for both), while those in the low-dose thalidomide and acitretin did not (p>0.05 for both). There were no differences for serum VEGF-A levels and the density of microvessels among the positive and experimental groups.

Conclusion: Thalidomide can improve the psoriasis-like lesions and inhibit the expression of cutaneous VEGF in imiquimod-induced psoriatic model with dose-dependence, however, it does not alter circulating VEGF-A levels and microvessel density in dermis.

Keywords: Balb/c mice; VEGF; imiquimod; pathological change; psoriasis model; thalidomide..

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acitretin / pharmacology
  • Angiogenesis Inhibitors / pharmacology*
  • Animals
  • Disease Models, Animal
  • Dose-Response Relationship, Drug
  • Down-Regulation
  • Female
  • Imiquimod*
  • Mice, Inbred BALB C
  • Microvessels / drug effects*
  • Microvessels / metabolism
  • Microvessels / pathology
  • Neovascularization, Pathologic*
  • Psoriasis / chemically induced
  • Psoriasis / drug therapy*
  • Psoriasis / metabolism
  • Psoriasis / pathology
  • Signal Transduction / drug effects
  • Skin / blood supply*
  • Skin / drug effects*
  • Skin / metabolism
  • Skin / pathology
  • Thalidomide / pharmacology*
  • Vascular Endothelial Growth Factor A / blood
  • Vascular Endothelial Growth Factor A / metabolism*

Substances

  • Angiogenesis Inhibitors
  • Vascular Endothelial Growth Factor A
  • vascular endothelial growth factor A, mouse
  • Thalidomide
  • Acitretin
  • Imiquimod