A genome-wide significant association on chromosome 2 for footrot resistance/susceptibility in Swiss White Alpine sheep

Anim Genet. 2017 Dec;48(6):712-715. doi: 10.1111/age.12614. Epub 2017 Oct 5.

Abstract

Footrot is one of the most important causes of lameness in global sheep populations and is characterized by a bacterial infection of the interdigital skin. As a multifactorial disease, its clinical representation depends not only on pathogen factors and environmental components but also on the individual resistance/susceptibility of the host. A genetic component has been shown in previous studies; however, so far no causative genetic variant influencing the risk of developing footrot has been identified. In this study, we genotyped 373 Swiss White Alpine sheep, using the ovine high-density 600k SNP chip, in order to run a DNA-based comparison of individuals with known clinical footrot status. We performed a case-control genome-wide association study, which revealed a genome-wide significant association for SNP rs418747104 on ovine chromosome 2 at 81.2 Mb. The three best associated SNP markers were located at the MPDZ gene, which codes for the multiple PDZ domain crumbs cell polarity complex component protein, also known as multi-PDZ domain protein 1 (MUPP1). This protein is possibly involved in maintaining the barrier function and integrity of tight junctions. Therefore, we speculate that individuals carrying MPDZ variants may differ in their footrot resistance/susceptibility due to modified horn and interdigital skin integrity. In conclusion, our study reveals that MPDZ might represent a functional candidate gene, and further research is needed to explore its role in footrot affected sheep.

Keywords: Dichelobacter nodosus; GWAS; MPDZ; MUPP1; lameness.

MeSH terms

  • Animals
  • Carrier Proteins / genetics
  • Disease Resistance / genetics
  • Foot Rot / genetics*
  • Genetic Predisposition to Disease
  • Genome-Wide Association Study
  • Hoof and Claw / pathology
  • Linear Models
  • Models, Genetic
  • Polymorphism, Single Nucleotide
  • Sheep / genetics*
  • Sheep Diseases / genetics*

Substances

  • Carrier Proteins