Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities

Traffic. 2018 Jan;19(1):5-18. doi: 10.1111/tra.12533. Epub 2017 Nov 21.

Abstract

Vesicle-mediated transcellular transport or simply "transcytosis" is a cellular process used to shuttle macromolecules such as lipoproteins, antibodies, and albumin from one surface of a polarized cell to the other. This mechanism is in contrast to the transit of small molecules such as anions, cations and amino acids that occur via uptake, diffusion through the cytosol and release and is also distinct from paracellular leak between cells. Importantly, transcytosis has evolved as a process to selectively move macromolecules between 2 neighboring yet unique microenvironments within a multicellular organism. Examples include the movement of lipoproteins out of the circulatory system and into tissues and the delivery of immunoglobulins to mucosal surfaces. Regardless of whether the transport is conducted by endothelial or epithelial cells, the process often involves receptor-mediated uptake of a ligand into an endocytic vesicle, regulated transit of the carrier through the cytoplasm and release of the cargo via an exocytic event. While transcytosis has been examined in detail in epithelial cells, for both historical and technical reasons, the process is less understood in endothelial cells. Here, we spotlight aspects of epithelial transcytosis including recent findings and review the comparative dearth of knowledge regarding the process in endothelial cells highlighting the opportunity for further study.

Keywords: endothelial cells; epithelial cells; ligand; membranes; receptor; transcytosis; vesicular transport.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Endothelial Cells / metabolism*
  • Endothelium, Vascular / cytology
  • Endothelium, Vascular / metabolism
  • Humans
  • Transcytosis*
  • Transport Vesicles / metabolism*