Objectives: The aim of the study was to explore the role of the stability of metal complexes in the processes that lead to the metal retention in the brain and other tissues of mice administered with lanthanides-based contrast agents. This issue was tackled by the simultaneous injection of gadolinium (Gd)-diethylentriamminopentaacetate (DTPA) and lanthanum-DTPA, which have the same charge and structure but differ in their thermodynamic stability by 3 orders of magnitude.
Materials and methods: A total of 20 healthy BALB/c mice were administered by a single intravenous injection with a dose consisting of 0.6 mmol La-DTPA/kg and 0.6 mmol Gd-DTPA/kg. Then the animals were killed at different time points: 4, 24, 48, and 96 hours (5 mice each group).In an additional protocol, 5 mice were administered with 9 doses of 0.3 mmol La-DTPA/kg and 0.3 mmol of Gd-DTPA/kg every 2 days over a period of 3 weeks. The sacrifice time was set to 3 weeks after the last administration. After sacrifice, the Gd and La content in liver, spleen, kidney, muscle, cerebrum, cerebellum, bone, eye, skin, blood, and urine was determined by inductively coupled plasma-mass spectrometry.
Results: A general decrease in the content of both the lanthanides was observed upon delaying the sacrifice time. At relatively short times after the injection (up to 96 hours), in the spleen, kidney, muscle, skin, and eye, almost the same content of La and Gd was detected, whereas in the cerebrum, cerebellum, bones, and liver, the amount of retained La decreased much slower than that of Gd, yielding a progressive increase in La/Gd ratio. The amount of retained La in the various tissues 21 days after the last of 9 administrations of La-DTPA and Gd-DTPA was always significantly higher than that of Gd. The concentration of both La and Gd decreased rapidly both in blood and in urine samples.
Discussion: The departure from the 1:1 ratio in the amounts of La and Gd determined in the investigated tissues has been used to gain information on the role of the complex stability and "wash-out" kinetics. The behavior of the less s` La-DTPA highlights processes occurring for Gd-DTPA at a slower rate.The herein obtained results support the view that most of the La/Gd retained in the brain arises from the intact chelate that has extravasated immediately after the intravenous administration. Long-term deposition of metal ions from internal reservoirs seems particularly relevant for liver and spleen.