Structural decomposition of decadal climate prediction errors: A Bayesian approach

Sci Rep. 2017 Oct 9;7(1):12862. doi: 10.1038/s41598-017-13144-2.

Abstract

Decadal climate predictions use initialized coupled model simulations that are typically affected by a drift toward a biased climatology determined by systematic model errors. Model drifts thus reflect a fundamental source of uncertainty in decadal climate predictions. However, their analysis has so far relied on ad-hoc assessments of empirical and subjective character. Here, we define the climate model drift as a dynamical process rather than a descriptive diagnostic. A unified statistical Bayesian framework is proposed where a state-space model is used to decompose systematic decadal climate prediction errors into an initial drift, seasonally varying climatological biases and additional effects of co-varying climate processes. An application to tropical and south Atlantic sea-surface temperatures illustrates how the method allows to evaluate and elucidate dynamic interdependencies between drift, biases, hindcast residuals and background climate. Our approach thus offers a methodology for objective, quantitative and explanatory error estimation in climate predictions.

Publication types

  • Research Support, Non-U.S. Gov't