The global threat of antimicrobial resistance (AMR) has arisen through a network of complex interacting factors. Many different sources and transmission pathways contribute to the ever-growing burden of AMR in our clinical settings. The lack of data on these mechanisms and the relative importance of different factors causing the emergence and spread of AMR hampers our global efforts to effectively manage the risks. Importantly, we have little quantitative knowledge on the relative contributions of these sources and are likely to be targeting our interventions suboptimally as a result. Here we propose a systems mapping approach to address the urgent need for reliable and timely data to strengthen the response to AMR.
Keywords: antimicrobial resistance; mapping; mathematical modeling; quantification.
© The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: [email protected].