Background: The incidence of thyroid cancer is increasing worldwide, and there is an emerging need to develop accurate tools for diagnosis. Fine needle aspiration biopsy has greatly improved evaluation of thyroid nodules, but challenges with indeterminate lesions remain in up to 25% of biopsies. Novel tissue biomarkers may assist in improved nodule characterization. Microcalcifications occurring in thyroid cancers suggest proteins involved in bone formation may play a role in thyroid carcinogenesis. We evaluated the expression of the known osteogenic protein, Enigma, in thyroid cancer as a candidate oncoprotein and role in carcinogenesis based on association with other known oncoproteins such as bone morphogenetic protein-1 (BMP-1).
Methods: The expression of both Enigma and BMP-1 were evaluated by immunohistochemistry (IHC) in an equal number of benign (n = 120) and different histological subtypes of malignant (n = 120) human archival thyroid nodules with and without calcification. The colocalization of Enigma with BMP-1 was evaluated by confocal microscopy using the BZ analyzer.
Results: Enigma was strongly expressed in thyroid cancer tissue with a higher immunoreactive score in advanced thyroid cancer compared to less advanced and benign nodules. Enigma was localized either in cytoplasm or nucleus depending on the histological subtypes. Higher expression of Enigma was associated with the tumor size and lymph node involvement. There was clear and strong colocalization signal of Enigma and that of BMP-1. Expression of Enigma occurred without regard to calcification in cancer tissue.
Conclusion: Enigma may serve as an oncoprotein marker, identifying benign from malignant thyroid tissue on FNA. Enigma may have a role in carcinogenesis of thyroid cancer independent of tissue calcification, possibly in relation to interaction with BMP-1.
Keywords: Enigma; bone morphogenetic protein-1 (BMP-1); calcification; immunohistochemistry; thyroid nodules.
© 2017 Wiley Periodicals, Inc.