Characterizing Active Ingredients of eHealth Interventions Targeting Persons With Poorly Controlled Type 2 Diabetes Mellitus Using the Behavior Change Techniques Taxonomy: Scoping Review

J Med Internet Res. 2017 Oct 12;19(10):e348. doi: 10.2196/jmir.7135.

Abstract

Background: The behavior change technique taxonomy v1 (BCTTv1; Michie and colleagues, 2013) is a comprehensive tool to characterize active ingredients of interventions and includes 93 labels that are hierarchically clustered into 16 hierarchical clusters.

Objective: The aim of this study was to identify the active ingredients in electronic health (eHealth) interventions targeting patients with poorly controlled type 2 diabetes mellitus (T2DM) and relevant outcomes.

Methods: We conducted a scoping review using the BCTTv1. Randomized controlled trials (RCTs), studies with or pre-post-test designs, and quasi-experimental studies examining efficacy and effectiveness of eHealth interventions for disease management or the promotion of relevant health behaviors were identified by searching PubMed, Web of Science, and PsycINFO. Reviewers independently screened titles and abstracts for eligibility using predetermined eligibility criteria. Data were extracted following a data extraction sheet. The BCTTv1 was used to characterize active ingredients of the interventions reported in the included studies.

Results: Of the 1404 unique records screened, 32 studies fulfilled the inclusion criteria and reported results on the efficacy and or or effectiveness of interventions. Of the included 32 studies, 18 (56%) were Web-based interventions delivered via personal digital assistant (PDA), tablet, computer, and/or mobile phones; 7 (22%) were telehealth interventions delivered via landline; 6 (19%) made use of text messaging (short service message, SMS); and 1 employed videoconferencing (3%). Of the 16 hierarchical clusters of the BCTTv1, 11 were identified in interventions included in this review. Of the 93 individual behavior change techniques (BCTs), 31 were identified as active ingredients of the interventions. The most common BCTs identified were instruction on how to perform behavior, adding objects to the environment, information about health consequences, self-monitoring of the outcomes and/or and prefers to be explicit to avoid ambiguity. Response: Checked and avoided of a certain behavior Author: Please note that the journal discourages the use of parenthesis to denote either and/or and prefers to be explicit to avoid ambiguity. Response: Checked and avoided "and/or" and prefers to be explicit to avoid ambiguity. Response: Checked and avoided, and feedback on outcomes of behavior.

Conclusions: Our results suggest that the majority of BCTs employed in interventions targeting persons with T2DM revolve around the promotion of self-regulatory behavior to manage the disease or to assist patients in performing health behaviors necessary to prevent further complications of the disease. Detailed reporting of the BCTs included in interventions targeting this population may facilitate the replication and further investigation of such interventions.

Keywords: eHealth; mHealth; mobile health; telehealth; telemedicine; type 2 diabetes.

Publication types

  • Review

MeSH terms

  • Behavior Therapy / methods*
  • Classification / methods*
  • Diabetes Mellitus, Type 2 / therapy*
  • Health Behavior
  • Humans
  • Telemedicine / methods*