Concanavalin A (ConA)-induced hepatitis is an experimental model of human autoimmune hepatitis induced in rodents by i.v. injection of Con A. The disease is characterized by increase in serum levels of transaminases and massive immune infiltration of the livers. Type 1, type 2, and type 17 cytokines play a pathogenic role in the development of ConA-induced hepatitis. To understand further the immunoregulatory mechanisms operating in the development and regulation of ConA-induced hepatitis, we have evaluated the role of the anti-inflammatory pathway Nrf2/HO-1/CO (Nuclear Factor E2-related Factor 2/Heme Oxygenase-1/Carbon Monoxide) in this condition and determined whether the in vivo administration of CO via the CO-releasing molecule (CORM) CORM-A1, influences serological and histological development of Con-A-induced hepatitis. We have firstly evaluated in silico the genes belonging to the Nrf2/HO-1/CO pathway that are involved in the pathogenesis of autoimmune hepatitis (AIH). The data obtained from the in silico study demonstrate that a significant number of genes modulated in the liver of ConA-challenged mice belong to the Nrf2 pathway; on the other hand, the administration of CORM-A1 determines an improvement in several sero-immunological and histological parameters, and it is able to modulate genes identified by the in silico analysis. Collectively, our data indicate that the Nrf2/HO-1/CO pathway is fundamental for the regulation of the immune responses, and that therapeutic intervention aimed at its modulation by CORM-A1 may represent a valuable strategy to be considered for the treatment of autoimmune hepatitis in humans.
Keywords: CORM-A1; autoimmune hepatitis; carbon monoxide.
© 2017 Wiley Periodicals, Inc.