Structural Monitoring of the Onset of Excited-State Aromaticity in a Liquid Crystal Phase

J Am Chem Soc. 2017 Nov 8;139(44):15792-15800. doi: 10.1021/jacs.7b08021. Epub 2017 Oct 25.

Abstract

Aromaticity of photoexcited molecules is an important concept in organic chemistry. Its theory, Baird's rule for triplet aromaticity since 1972 gives the rationale of photoinduced conformational changes and photochemical reactivities of cyclic π-conjugated systems. However, it is still challenging to monitor the dynamic structural change induced by the excited-state aromaticity, particularly in condensed materials. Here we report direct structural observation of a molecular motion and a subsequent packing deformation accompanied by the excited-state aromaticity. Photoactive liquid crystal (LC) molecules featuring a π-expanded cyclooctatetraene core unit are orientationally ordered but loosely packed in a columnar LC phase, and therefore a photoinduced conformational planarization by the excited-state aromaticity has been successfully observed by time-resolved electron diffractometry and vibrational spectroscopy. The structural change took place in the vicinity of excited molecules, producing a twisted stacking structure. A nanoscale torque driven by the excited-state aromaticity can be used as the working mechanism of new photoresponsive materials.

Publication types

  • Research Support, Non-U.S. Gov't