Polycystic ovary syndrome (PCOS)is a gynecological endocrine disorder which is associated with systemic inflammatory status inducing red blood cells (RBC) membrane alterations related to insulin resistance and testosterone levels which could be greatly improved by myo-inositol (MYO) uptake. In this study we aim to evaluate the effect of MYO in reducing oxidative-related alterations through in vitro study on PCOS RBC. Blood samples from two groups of volunteers, control group (CG, n = 12) and PCOS patient group (PG, n = 12), were analyzed for band 3 tyrosine phosphorylation (Tyr-P), high molecular weight aggregate (HMWA), IgG in RBC membranes, and glutathione (GSH) in cytosol, following O/N incubation in the presence or absence of MYO. PCOS RBC underwent oxidative stress as indicated by higher band 3 Tyr-P and HMWA and increased membrane bound autologous IgG. Twenty four hours (but not shorter time) MYO incubation, significantly improved both Tyr-P level and HMWA formation and concomitant membrane IgG binding. However, no relevant modification of GSH content was detected. PCOS RBC membranes are characterized by increased oxidized level and enhanced sensitivity to oxidative injuries leading to potential premature RBC removal. MYO treatment is effective in reducing oxidative related abnormalities in PCOS patients probably restoring the inositol phospholipid pools of the membranes.
Keywords: Polycystic ovary syndrome (PCOS); glutathione (GSH); myo-inositol (MYO); oxidative stress; red blood cell (RBC).