The tubulysins are promising anticancer cytotoxic agents due to the clinical validation of their mechanism of action (microtubule inhibition) and their particular activity against multidrug-resistant tumor cells. Yet their high potency and subsequent systemic toxicity make them prime candidates for targeted therapy, particularly in the form of antibody-drug conjugates (ADCs). Here we report a strategy to prepare stable and bioreversible conjugates of tubulysins to antibodies without loss of activity. A peptide trigger along with a quaternary ammonium salt linker connection to the tertiary amine of tubulysin provided ADCs that were potent in vitro. However, we observed metabolism of a critical acetate ester of the drug in vivo, resulting in diminished conjugate activity. We were able to circumvent this metabolic liability with the judicious choice of a propyl ether replacement. This modified tubulysin ADC was stable and effective against multidrug-resistant lymphoma cell lines and tumors.
Keywords: Antibody−drug conjugate (ADC); Pgp; linker; multidrug-resistance; tubulysin.