Foldamer-Mediated Structural Rearrangement Attenuates Aβ Oligomerization and Cytotoxicity

J Am Chem Soc. 2017 Nov 29;139(47):17098-17108. doi: 10.1021/jacs.7b08259. Epub 2017 Nov 10.

Abstract

The conversion of the native random coil amyloid beta (Aβ) into amyloid fibers is thought to be a key event in the progression of Alzheimer's disease (AD). A significant body of evidence suggests that the highly dynamic Aβ oligomers are the main causal agent associated with the onset of AD. Among many potential therapeutic approaches, one is the modulation of Aβ conformation into off-pathway structures to avoid the formation of the putative neurotoxic Aβ oligomers. A library of oligoquinolines was screened to identify antagonists of Aβ oligomerization, amyloid formation, and cytotoxicity. A dianionic tetraquinoline, denoted as 5, was one of the most potent antagonists of Aβ fibrillation. Biophysical assays including amyloid kinetics, dot blot, ELISA, and TEM show that 5 effectively inhibits both Aβ oligomerization and fibrillation. The antagonist activity of 5 toward Aβ aggregation diminishes with sequence and positional changes in the surface functionalities. 5 binds to the central discordant α-helical region and induces a unique α-helical conformation in Aβ. Interestingly, 5 adjusts its conformation to optimize the antagonist activity against Aβ. 5 effectively rescues neuroblastoma cells from Aβ-mediated cytotoxicity and antagonizes fibrillation and cytotoxicity pathways of secondary nucleation induced by seeding. 5 is also equally effective in inhibiting preformed oligomer-mediated processes. Collectively, 5 induces strong secondary structure in Aβ and inhibits its functions including oligomerization, fibrillation, and cytotoxicity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / metabolism
  • Amyloid / antagonists & inhibitors
  • Amyloid / chemistry*
  • Amyloid / metabolism
  • Amyloid / toxicity*
  • Amyloid beta-Peptides / chemistry*
  • Amyloid beta-Peptides / metabolism
  • Amyloid beta-Peptides / toxicity*
  • Humans
  • Kinetics
  • Peptide Fragments / chemistry
  • Peptide Fragments / metabolism
  • Prions / antagonists & inhibitors
  • Prions / chemistry
  • Prions / metabolism
  • Prions / toxicity
  • Protein Aggregation, Pathological / drug therapy*
  • Protein Structure, Secondary / drug effects

Substances

  • Amyloid
  • Amyloid beta-Peptides
  • Peptide Fragments
  • Prions