iASPP facilitates tumor growth by promoting mTOR-dependent autophagy in human non-small-cell lung cancer

Cell Death Dis. 2017 Oct 26;8(10):e3150. doi: 10.1038/cddis.2017.515.

Abstract

Autophagy serves a critical function in the pathogenesis, response to therapy and clinical outcome in cancers. Although a recent report showed a role of iASPP in suppressing autophagy, its potential activity as a regulator of autophagy has not been investigated in lung cancer. Here we investigated the potential function and molecular mechanism of iASPP in mediating autophagy in human non-small-cell lung cancer. Our data suggested that forced expression of iASPP triggered autophagic flux, while inhibition of iASPP suppressed autophagy at the autophagsome formation stage in vitro. Furthermore, in vivo overexpression of iASPP in SCID/NOD mice promoted tumorigenesis and autophagy, with an increase in the conversion from LC3-I to LC3-II. The effects of iASPP were mediated through activation of mTOR pathway. Finally, cytoplasmic iASPP expression was upregulated in lung cancer patients, and was identified as an independent poor prognostic factor for lung cancer-specific death in patient samples. Taken together, our data showed that iASPP could promote tumor growth by increasing autophagic flux, and iASPP could serve as a poor prognostic factor and a potential therapeutic target in lung cancer.

MeSH terms

  • Animals
  • Autophagy
  • Carcinoma, Non-Small-Cell Lung / genetics
  • Carcinoma, Non-Small-Cell Lung / metabolism*
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Humans
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism*
  • Lung Neoplasms / pathology
  • Male
  • Mice
  • Mice, Inbred NOD
  • Mice, SCID
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism*
  • TOR Serine-Threonine Kinases / genetics
  • TOR Serine-Threonine Kinases / metabolism*
  • Xenograft Model Antitumor Assays

Substances

  • Intracellular Signaling Peptides and Proteins
  • PPP1R13L protein, human
  • Repressor Proteins
  • MTOR protein, human
  • TOR Serine-Threonine Kinases