Chemical crosslinking and mass spectrometry to elucidate the topology of integral membrane proteins

PLoS One. 2017 Oct 26;12(10):e0186840. doi: 10.1371/journal.pone.0186840. eCollection 2017.

Abstract

Here we made an attempt to obtain partial structural information on the topology of multispan integral membrane proteins of yeast by isolating organellar membranes, removing peripheral membrane proteins at pH 11.5 and introducing chemical crosslinks between vicinal amino acids either using homo- or hetero-bifunctional crosslinkers. Proteins were digested with specific proteases and the products analysed by mass spectrometry. Dedicated software tools were used together with filtering steps optimized to remove false positive crosslinks. In proteins of known structure, crosslinks were found only between loops residing on the same side of the membrane. As may be expected, crosslinks were mainly found in very abundant proteins. Our approach seems to hold to promise to yield low resolution topological information for naturally very abundant or strongly overexpressed proteins with relatively little effort. Here, we report novel XL-MS-based topology data for 17 integral membrane proteins (Akr1p, Fks1p, Gas1p, Ggc1p, Gpt2p, Ifa38p, Ist2p, Lag1p, Pet9p, Pma1p, Por1p, Sct1p, Sec61p, Slc1p, Spf1p, Vph1p, Ybt1p).

MeSH terms

  • Cross-Linking Reagents / chemistry
  • Mass Spectrometry
  • Membrane Proteins / chemistry
  • Membrane Proteins / metabolism*
  • Saccharomyces cerevisiae / chemistry
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / metabolism*

Substances

  • Cross-Linking Reagents
  • Membrane Proteins
  • Saccharomyces cerevisiae Proteins

Grants and funding

This work was supported by the Swiss National Science Foundation (http://www.snf.ch) grant numbers CRSI33_125232 and 31003AB_131078 (to AC), and 31003A_153416 (to RS), and the Novartis Foundation for medical-biological research (http://www.stiftungmedbiol.novartis.com) grant 14C155 (to AC).