Phenotypic Characterization of Corneal Endothelial Dystrophy in German Shorthaired and Wirehaired Pointers Using In Vivo Advanced Corneal Imaging and Histopathology

Cornea. 2018 Jan;37(1):88-94. doi: 10.1097/ICO.0000000000001431.

Abstract

Purpose: To evaluate corneal morphology using ultrasonic pachymetry (USP), Fourier-domain optical coherence tomography (FD-OCT), and in vivo confocal microscopy (IVCM) in 2 related canine breeds-German shorthaired pointers (GSHPs) and German wirehaired pointers (GWHPs)-with and without corneal endothelial dystrophy (CED). This condition is characterized by premature endothelial cell degeneration leading to concomitant corneal edema and is similar to Fuchs endothelial corneal dystrophy.

Methods: Corneas of 10 CED-affected (4 GSHP and 6 GWHP) and 19 unaffected, age-matched (15 GSHP and 4 GWHP) dogs were examined using USP, FD-OCT, and IVCM. A 2-sample t test or Mann-Whitney rank-sum test was used to statistically compare parameters between both groups. Data are presented as mean ± SD or median (range).

Results: Central corneal thickness determined using USP was significantly greater in CED-affected than in unaffected dogs at 1179 (953-1959) and 646 (497-737) μm, respectively (P < 0.001). Central epithelial thickness was found to be significantly decreased in CED-affected versus unaffected dogs at 47 ± 7.1 and 55 ± 7.1 μm, respectively (P = 0.011), using FD-OCT. With IVCM, corneal endothelial density was significantly less (P < 0.001) in 5 dogs with CED versus 19 unaffected controls at 499 ± 315 versus 1805 ± 298 cells/mm, respectively. CED-affected dogs exhibited endothelial pleomorphism and polymegethism, whereas CED-unaffected dogs had regular hexagonal arrangement of cells.

Conclusions: GSHPs and GWHPs with CED exhibit marked differences in corneal morphology when compared with age-matched control dogs. These 2 CED-affected breeds represent spontaneous, large animal models for human Fuchs endothelial corneal dystrophy.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Cell Count
  • Corneal Pachymetry / veterinary
  • Disease Models, Animal*
  • Dog Diseases / diagnostic imaging
  • Dog Diseases / pathology*
  • Dogs
  • Endothelium, Corneal / pathology
  • Female
  • Fourier Analysis
  • Fuchs' Endothelial Dystrophy / diagnostic imaging
  • Fuchs' Endothelial Dystrophy / pathology
  • Fuchs' Endothelial Dystrophy / veterinary*
  • Male
  • Microscopy, Confocal / veterinary
  • Phenotype
  • Tomography, Optical Coherence / veterinary