Background and aim of the study: The configuration of the native annulus changes from nearly flat in the diastolic phase to saddle-shaped in the systolic phase. The present study was conducted to test a novel remodeling annuloplasty ring with built-in septal-lateral fixation and commissural axial flexibility so as to maintain the change in annular saddle shape. The study aim was to evaluate the in-vivo biomechanical performance of the novel annuloplasty ring, compared with the native valve and a semi-rigid and rigid annuloplasty ring.
Methods: All measurements were performed in vivo using a porcine model. A total of 28 pigs (bodyweight ca. 80 kg) were randomized to four groups: (i) with no ring; (ii) with a novel remodeling ring; (iii) with a semi-rigid ring (Physio I Ring, Edwards Lifesciences); and (iv) with a rigid ring (Classic Annuloplasty Ring, Edwards Lifesciences). Force measurements were performed using a dedicated transducer to determine remodeling capacity of the annuloplasty rings. Geometric parameters were measured by implanting sonomicrometry crystals along the mitral annulus.
Results: All ring groups significantly restricted the cyclic change of the mitral annulus compared with the 'no-ring' group. The change and maximum value of the annular height were maintained for the novel ring but were significantly decreased for the rigid and semi-rigid rings compared with the 'no-ring' group. Mitral annular force measurements confirmed that the overall remodeling capacity of the novel ring was comparable with the conventional ring groups, and significantly higher in the septal-lateral direction compared to the semi-rigid ring.
Conclusions: In-vivo geometry and force measurements indicated that the intended design features of the new device were successfully provided. The novel ring concept with remodeling properties, combined with the advantages of a flexible annuloplasty ring, is unique. The maintenance of annular saddle shape and cyclic change in annular height may be an important step towards improved mitral valve repair.